Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS One ; 16(9): e0256813, 2021.
Article in English | MEDLINE | ID: covidwho-1410652

ABSTRACT

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Hot Temperature , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Inactivation , COVID-19/epidemiology , COVID-19/virology , Epidemics/prevention & control , Humans , Nasopharynx/virology , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/physiology , Sensitivity and Specificity , Specimen Handling/methods , Workflow
2.
Nature ; 594(7861): 88-93, 2021 06.
Article in English | MEDLINE | ID: covidwho-1171428

ABSTRACT

COVID-19 is a disease with unique characteristics that include lung thrombosis1, frequent diarrhoea2, abnormal activation of the inflammatory response3 and rapid deterioration of lung function consistent with alveolar oedema4. The pathological substrate for these findings remains unknown. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. The generation of these syncytia results from activation of the SARS-CoV-2 spike protein at the cell plasma membrane level. On the basis of these observations, we performed two high-content microscopy-based screenings with more than 3,000 approved drugs to search for inhibitors of spike-driven syncytia. We converged on the identification of 83 drugs that inhibited spike-mediated cell fusion, several of which belonged to defined pharmacological classes. We focused our attention on effective drugs that also protected against virus replication and associated cytopathicity. One of the most effective molecules was the antihelminthic drug niclosamide, which markedly blunted calcium oscillations and membrane conductance in spike-expressing cells by suppressing the activity of TMEM16F (also known as anoctamin 6), a calcium-activated ion channel and scramblase that is responsible for exposure of phosphatidylserine on the cell surface. These findings suggest a potential mechanism for COVID-19 disease pathogenesis and support the repurposing of niclosamide for therapy.


Subject(s)
Anoctamins/antagonists & inhibitors , COVID-19/pathology , Cell Fusion , Drug Evaluation, Preclinical , Giant Cells/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Aged , Aged, 80 and over , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , Anoctamins/metabolism , COVID-19/metabolism , COVID-19/virology , Calcium Signaling/drug effects , Cell Line , Chloride Channels/metabolism , Chlorocebus aethiops , Female , Giant Cells/metabolism , Giant Cells/virology , Humans , Lung/drug effects , Lung/pathology , Lung/virology , Male , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL